|
Wyjście Spis treści Wstecz Dalej
Autor artykułu |
©2026 mgr Jerzy Wałaszek
|

If you use Microchip copyrighted material solely for educational (non-profit) purposes falling under the “fair use” exception of the U.S. Copyright Act of 1976 then you do not need Microchip’s written permission. For example, Microchip’s
permission is not required when using copyrighted material in:
https://www.microchip.com/about-us/legal-information/copyright-usage-guidelines
Napięcie zasilające.
Masa.
Port A jest 3-bitowym, dwukierunkowym portem we/wy za wewnętrznymi opornikami podciągającymi (osobno aktywowanymi dla poszczególnych bitów). Bufory wyjściowe portu A posiadają symetryczne Parametry sterowania dla prądów wpływających i wypływających. Jako wejścia końcówki portu A, które są zewnętrznie wysterowane stanem niskim, będą wyprowadzały prąd, jeśli zostały dla nich aktywowane oporniki podciągające. W czasie stanu resetowania końcówki portu A przechodzą w stan wysokiej impedancji, nawet przy pracy zegara. Port A posiada również funkcje alternatywne.
Port B jest 8-bitowym, dwukierunkowym portem we/wy za wewnętrznymi opornikami podciągającymi (osobno aktywowanymi dla poszczególnych bitów). Bufory wyjściowe portu B posiadają symetryczne Parametry sterowania dla prądów wpływających i wypływających. Jako wejścia końcówki portu B, które są zewnętrznie wysterowane stanem niskim, będą wyprowadzały prąd, jeśli zostały dla nich aktywowane oporniki podciągające. W czasie stanu resetowania końcówki portu B przechodzą w stan wysokiej impedancji, nawet przy pracy zegara. Port B posiada również funkcje alternatywne.
Port D jest 7-bitowym, dwukierunkowym portem we/wy za wewnętrznymi opornikami podciągającymi (osobno aktywowanymi dla poszczególnych bitów). Bufory wyjściowe portu D posiadają symetryczne Parametry sterowania dla prądów wpływających i wypływających. Jako wejścia końcówki portu D, które są zewnętrznie wysterowane stanem niskim, będą wyprowadzały prąd, jeśli zostały dla nich aktywowane oporniki podciągające. W czasie stanu resetowania końcówki portu D przechodzą w stan wysokiej impedancji, nawet przy pracy zegara. Port D posiada również funkcje alternatywne.
Wejście resetowania. Stan niski na tej końcówce przez czas dłuższy niż długość minimalnego impulsu wygeneruje reset, nawet jeśli zegar nie pracuje. Minimalna długość impulsu podana jest w poniższej tabeli:
Charakterystyka resetu
| Symbol | Parametr | Warunek | Min. | Typ. | Max. | Jednostka |
| VPOT | Próg resetu przy włączaniu (napięcie rośnie) | TA = -40 ... 85°C | 1,2 | V | ||
| Próg resetu przy włączaniu (napięcie spada) | TA = -40 ... 85°C | 1,1 | V | |||
| VRST | Napięcie progowe końcówki RESET | VCC = 1,8 ... 5,5V | 0,2VCC | 0.9VCC | V | |
| tRST | Minimalna długość impulsu na końcówce RESET | VCC = 1,8 ... 5,5V | 2,5 | μs |
Krótsze impulsy nie dają gwarancji wygenerowania resetu. Wejście resetowania jest funkcją alternatywną końcówki PA2 i dW.
Wejście dla odwracającego wzmacniacza oscylatora i wejście dla układu wewnętrznego zegara roboczego. XTAL1 jest funkcją alternatywną końcówki PA0.
Wyjście z odwracającego wzmacniacza oscylatora. XTAL2 jest funkcją alternatywną końcówki PA1.

Wymiary w mm


Wymiary w mm


Wymiary w mm


Wymiary w mm

![]() |
Zespół Przedmiotowy Chemii-Fizyki-Informatyki w I Liceum Ogólnokształcącym im. Kazimierza Brodzińskiego w Tarnowie ul. Piłsudskiego 4 ©2026 mgr Jerzy Wałaszek |
Materiały tylko do użytku dydaktycznego. Ich kopiowanie i powielanie jest dozwolone pod warunkiem podania źródła oraz niepobierania za to pieniędzy.
Pytania proszę przesyłać na adres email:
Serwis wykorzystuje pliki cookies. Jeśli nie chcesz ich otrzymywać, zablokuj je w swojej przeglądarce.
Informacje dodatkowe.