Serwis Edukacyjny
w I-LO w Tarnowie
obrazek

Materiały dla uczniów liceum

  Wyjście       Spis treści       Wstecz       Dalej  

obrazek

Autor artykułu: mgr Jerzy Wałaszek
Konsultacje: Wojciech Grodowski, mgr inż. Janusz Wałaszek

©2024 mgr Jerzy Wałaszek
I LO w Tarnowie

obrazek

Mikrokontrolery

ATmega16

Przegląd

obrazek

Educational and Non-Profit Use of Copyrighted Material:

If you use Microchip copyrighted material solely for educational (non-profit) purposes falling under the “fair use” exception of the U.S. Copyright Act of 1976 then you do not need Microchip’s written permission. For example, Microchip’s permission is not required when using copyrighted material in: (1) an academic report, thesis, or dissertation; (2) classroom handouts or textbook; or (3) a presentation or article that is solely educational in nature (e.g., technical article published in a magazine).

https://www.microchip.com/about-us/legal-information/copyright-usage-guidelines

SPIS TREŚCI
Podrozdziały

obrazek

Przegląd ogólny

Mikrokontroler ATmega16 jest 8-bitowym mikrokontrolerem CMOS o niskim poborze prądu opartym na rozszerzonej architekturze AVR RISC. Przez wykonywanie mocnych instrukcji w pojedynczym takcie zegarowym ATmega16 osiąga wydajność bliską 1 MIPS (1 miliona instrukcji na sekundę) na MHz, co pozwala projektantowi systemu zoptymalizować pobór energii w funkcji prędkości przetwarzania.

Schemat blokowy

Rdzeń AVR łączy bogaty zbiór instrukcji z 32 roboczymi rejestrami ogólnego przeznaczenia. Wszystkie 32 rejestry są bezpośrednio połączone z Jednostką Arytmetyczno Logiczną JAL (ang. Arithmetic Logic Unit ALU), umożliwiając jednoczesny dostęp do dwóch niezależnych rejestrów w pojedynczej instrukcji wykonywanej w ciągu jednego cyklu zegarowego. Wynikowa architektura jest bardziej efektywna, a jednocześnie osiąga wydajność do dziesięciu razy większą od typowych mikrokontrolerów CISC (ang. Complex Instruction Set Computer – komputer o liście złożonych rozkazów).

ATmega16 posiada następujące cechy: 16KB pamięci FLASH programowanej poprzez ISP z możliwością jednoczesnego programowania i odczytywania kodu, 512 bajtów EEPROM, 1KB SRAM, 32 linie we/wy ogólnego przeznaczenia, 32 robocze rejestry ogólnego przeznaczenia, interfejs JTAG do skanowania ścieżki krawędziowej, wbudowane w układ wsparcie dla debugowania i programowania, trzy elastyczne timery/liczniki z trybami porównań, przerwania wewnętrzne i zewnętrzne, szeregowy, programowany moduł USART, zorientowany na bajty 2-przewodowy interfejs szeregowy, 8-kanałowy, 10-bitowy przetwornik A/C z opcjonalnym stopniem wejść różnicowych o programowanym wzmocnieniu (tylko w obudowie TQFP), programowalny licznik zegarowy z wewnętrznym oscylatorem, port szeregowy SPI i sześć wybieranych programowo trybów oszczędzania energii. Tryb bezczynny (ang. Idle Mode) zatrzymuje mikroprocesor, pozwalając jednak na pracę pamięci SRAM, timerów/liczników, modułu USART, portu SPI, przetwornika A/C i systemu przerwań. Tryb wyłączenia zasilania (ang. Power-down Mode) zachowuje zawartość rejestrów i zatrzymuje oscylator, wyłączając wszystkie funkcje układu aż do momentu następnego przerwania lub sprzętowego resetu. W trybie oszczędzania energii (ang. Power-save Mode) asynchroniczny timer kontynuuje pracę, pozwalając użytkownikowi utrzymać podstawę timera, natomiast reszta mikrokontrolera jest uśpiona. Tryb zmniejszania zakłóceń dla przetwornika A/C (ang. ADC Noise Reduction Mode) zatrzymuje mikroprocesor i wszystkie moduły we/wy za wyjątkiem asynchronicznego timera i przetwornika A/C w celu zminimalizowania szumu od przełączeń w sieciach logicznych mikrokontrolera podczas przetwarzania napięć wejściowych w przetworniku A/C. W trybie gotowości/czuwania (ang. Standby Mode) oscylator kwarcowy/rezonatorowy pracuje, natomiast reszta mikrokontrolera jest uśpiona. Pozwala to na szybkie uruchomienie w połączeniu z niskim poborem prądu. W rozszerzonym trybie gotowości/czuwania (ang. Extended Standby Mode) pracują zarówno główny oscylator jak i timer asynchroniczny.

Układ mikrokontrolera jest wytwarzany z wykorzystaniem technologii wysokiej gęstości pamięci nieulotnej, którą opracowała firma ATMEL. Wewnętrzna, programowalna poprzez ISP pamięć FLASH pozwala na zaprogramowanie w systemie za pomocą zwykłego programatora pamięci nieulotnych lub za pomocą wbudowanego kodu startowego uruchomionego na rdzeniu AVR. Kod lądujący (ang. boot-loader) może korzystać z dowolnego interfejsu do załadowania programu aplikacji do pamięci FLASH programu. Oprogramowanie w sekcji chronionej FLASH (ang. Boot FLASH Section) może normalnie pracować podczas programowania sekcji kodu aplikacji (ang. Application FLASH Section), cecha ta nosi nazwę Read-While-Write (odczyt podczas zapisu). Przez połączenie 8-bitowego mikroprocesora RISC z samoprogramowalną w systemie pamięcią FLASH w monolitycznym układzie scalonym mikrokontroler ATmega16 staje się potężnym mikrokontrolerem dostarczającym wysoko elastycznego i efektywnego kosztowo rozwiązania dla wielu wbudowanych w urządzenia aplikacji sterujących.

Mikrokontrolery ATmega16 są wspierane przez komplet narzędzi do tworzenia systemów oraz ich oprogramowywania, łącznie z makroasemblerami, kompilatorami języka C oraz zestawami uruchomieniowymi.


Na początek:  podrozdziału   strony 

Zasoby

Firma Atmel, oryginalny producent mikrokontrolerów AVR, została wykupiona w roku 2016 przez Microchip Technology, producenta mikrokontrolerów PIC. Pomimo przejęcia mikrokontrolery AVR są wciąż produkowane i dostępne w handlu. Oryginalne zasoby internetowe Atmela są teraz dostępne w witrynie firmy Microchip:

https://www.microchip.com

Do programowania mikrokontrolerów AVR stosowane jest kilka pakietów IDE. Szczególnie polecam Atmel Studio 7, które umożliwia programowanie w języku C oraz w asemblerze. Opis instalacji tego środowiska znajdziesz w tym rozdziale:

Instalacja Atmel Studio 7

Równie popularnym środowiskiem programowania jest Eclipse z uwagi na to, iż może pracować w systemie Linux. Zaletą tego rozwiązania jest to, iż Eclipse pozwala na wykorzystanie tanich programatorów USBasp:

Instalacja Eclipse z AVRDude

Również środowisko MPLAB X firmy Microchip posiada możliwość programowania mikrokontrolerów AVR:

https://www.microchip.com/mplab/mplab-x-ide/avr-support


Na początek:  podrozdziału   strony 

Przykładowe kody programów

Ta dokumentacja zawiera proste przykłady kodów programów, które krótko pokazują sposób użycia różnych elementów mikrokontrolera. W przykładach tych zakłada się, iż do programu zostały dołączone odpowiednie pliki nagłówkowe przed kompilacją. Bądź jednak świadomy faktu, iż nie wszyscy producenci kompilatorów języka C dołączają definicje bitów w plikach nagłówkowych, a obsługa przerwań zależy od wybranego kompilatora C. Więcej szczegółów znajdziesz w dokumentacji swojego kompilatora.

Dla rejestrów we/wy znajdujących się w rozszerzonej pamięci we/wy należy zastąpić instrukcje IN, OUT, SBIS, SBIC, CBI i SBI instrukcjami, które umożliwiają dostęp do rozszerzonej pamięci we/wy. Zwykle oznacza to instrukcje LDS i STS połączone z SBRS, SBRC, SBR i CBR. Nie wszystkie mikrokontrolery AVR zawierają rozszerzoną pamięć we/wy.


Na początek:  podrozdziału   strony 

Trwałość danych

Wyniki badania niezawodności pokazują, że dane są tracone z częstotliwością dużo mniejszą od 1 PPM (ang. parts per million – części na milion) przez 20 lat w temperaturze 85°C lub przez 100 lat w temperaturze 25°C.

Na początek:  podrozdziału   strony 

Zespół Przedmiotowy
Chemii-Fizyki-Informatyki

w I Liceum Ogólnokształcącym
im. Kazimierza Brodzińskiego
w Tarnowie
ul. Piłsudskiego 4
©2024 mgr Jerzy Wałaszek

Materiały tylko do użytku dydaktycznego. Ich kopiowanie i powielanie jest dozwolone
pod warunkiem podania źródła oraz niepobierania za to pieniędzy.

Pytania proszę przesyłać na adres email: i-lo@eduinf.waw.pl

Serwis wykorzystuje pliki cookies. Jeśli nie chcesz ich otrzymywać, zablokuj je w swojej przeglądarce.

Informacje dodatkowe.