Serwis Edukacyjny w I-LO w Tarnowie ![]() Materiały dla uczniów liceum |
Wyjście Spis treści Wstecz Dalej Autor artykułu: mgr Jerzy Wałaszek |
©2023 mgr Jerzy Wałaszek |
SPIS TREŚCI |
Pojęcie bitu
|
Podrozdziały |
Transmisja cyfrowa (ang. digital transmission) polega na przesyłaniu informacji w postaci bitów pomiędzy dwoma urządzeniami cyfrowymi. Stanowi ona podstawę funkcjonowania naszej cywilizacji. Dzięki niej mamy Internet, telewizję, telefonię komórkową, nawigację GPS, energetykę, medycynę... Ilość zastosowań jest olbrzymia. W rozdziale tym opiszemy podstawowe idee transmisji cyfrowej. Zaczniemy od budowy toru transmisyjnego.
Zadaniem toru transmisyjnego jest przesłanie informacji binarnej od komputera nadawczego do komputera odbiorczego. Typowy tor transmisji danych cyfrowych składa się z następujących elementów:
Komputer nadawczy przekazuje informację do przesłania modemowi nadawczemu. Modem jest specjalnym urządzeniem, które informację cyfrową w postaci bitów zamienia na odpowiedni dla danego ośrodka sygnał (falę radiową, prąd elektryczny, światło lasera itp). Sygnał przenosi się (propaguje) przez ośrodek transmisyjny (przestrzeń, przewód elektryczny, światłowód itp). Po drugiej stronie toru transmisyjnego sygnał dociera do modemu odbiorczego. Modem odbiorczy odczytuje sygnał i, odpowiednio go interpretując, wydobywa z niego informację cyfrową, którą nadał modem odbiorczy. Wydobyta informacja jest przekazywana do komputera odbiorczego. Kanał transmisyjny posiada zwykle łączność w obu kierunkach. Kanałem zwrotnym komputer odbiorczy może przekazywać potwierdzenie odbioru danych - tzw. transmisja z potwierdzeniem (ang. hand shaking transmission).
Nazwa MODEM pochodzi od nazw MODULATOR i DEMODULATOR. Modulator jest układem wewnątrz modemu, który odpowiednio kształtuje (moduluje) sygnał wysyłany do ośrodka w zależności od przesyłanej informacji cyfrowej. Sygnał ten nazywamy sygnałem nośnym (ang. carrier). Demodulator wykonuje zadanie odwrotne - odebrany z ośrodka sygnał przekształca (demoduluje) z powrotem w informację cyfrową dla komputera odbiorczego.
Słowo modulacja (ang. modulation) oznacza kształtowanie różnych parametrów sygnału propagującego się przez ośrodek za pomocą informacji cyfrowej, którą ten sygnał ma przenieść. Sygnał najczęściej ma formę zbliżoną do kształtu sinusoidy (wykres funkcji f ( x ) = sin ( x )) i jest sygnałem okresowym (czyli takim, który powtarza się po określonym czasie). Fala sinusoidalna jest bardzo rozpowszechnionym rodzajem fali w przyrodzie. Jeśli wrzucisz do spokojnego stawu kamień, to powstałe, rozchodzące się fale będą właśnie falami sinusoidalnymi. Zobaczmy jakie parametry fali sinusoidalnej można modulować (kształtować):
Fala sinusoidalna zmienia się w czasie odchylając się w górę i w dół od położenia naturalnego. Wartość maksymalnego odchylenia od położenia równowagi nazywamy amplitudą sygnału i oznaczamy literką A :
f ( t ) = A · sin ( ω · t ) |
Drugim istotnym parametrem sygnału sinusoidalnego jest okres T. Jest to czas, po upływie którego fala zaczyna się powtarzać - przyjmuje te same wartości wychylenia. Okres mierzymy w sekundach. Bezpośrednio z okresem związana jest częstotliwość fali, czyli liczba okresów w ciągu jednej sekundy. Jednostką częstotliwości jest Hz (Herz - od nazwiska niemieckiego pioniera techniki radiowej, Heinricha Rudolfa Herza). Np. fala, o okresie 0,2 sekundy ma częstotliwość 5 Hz, ponieważ w jednej sekundzie mieści się jej pięć okresów. Wyższe jednostki częstotliwości to:
1 kHz 1 MHz 1 GHz |
= 1000 Hz = 1000 kHz = 1000 MHz |
= 1000 okresów w ciągu jednej sekundy = 1.000.000 Hz = 1.000.000 kHz = 1.000.000.000 Hz |
Trzecim parametrem jest przesunięcie fazowe Φ. Sygnał przesunięty fazowo posiada taką samą amplitudę oraz okres, lecz w stosunku do sygnału nie przesuniętego przyjmuje wartości wychylenia z pewnym opóźnieniem. Miarą przesunięcia fazowego jest kąt w radianach.
Mamy zatem trzy różne parametry sygnału, które można modulować:
Sygnał zmodulowany jednym z powyższych sposobów przenosił będzie informację cyfrową, czyli bity. Transmisja pojedynczych bitów jest transmisją szeregową. Dla każdego bitu przewidziany jest pewien krótki czas transmisji zwany oknem transmisji bitu (ang. bit transmit window) lub ramką bitu (ang. bit transmit frame). Bity są przesyłane jeden po drugim.
W modulacji amplitudy kształtujemy amplitudę sygnału w zależności od przesyłanego bitu 0 lub 1. Umówmy się, iż bit 0 będzie reprezentowany sygnałem o małej amplitudzie, a bit 1 będzie reprezentowany sygnałem o amplitudzie dużej.
Amplitudy dla bitu 0 i 1 muszą być tak dobrane, aby łatwo dały się odróżnić od siebie po stronie odbiorczej toru transmisyjnego.
Modem odbiera od komputera nadawczego informację cyfrową w postaci bitów. Wykorzystując stany bitów modem nadawczy moduluje odpowiednio amplitudę sygnału nośnego i wysyła go do ośrodka transmisyjnego. Poniżej przedstawiamy w dużym uproszczeniu przykładowy kształt sygnału zmodulowanego amplitudowo dla informacji binarnej 11010100.
Transmisja z modulacją amplitudy jest mało odporna na zakłócenia. Przez zakłócenie rozumiemy obcy sygnał, który losowo pojawia się w kanale transmisyjnym i oddziałuje na sygnał nadawany. Zakłócenia powstają z różnych powodów - wyładowania atmosferyczne, praca różnych urządzeń elektrycznych, iskrzenia styków, promieniowanie kosmiczne tp. Sygnał zakłócający dodaje się do sygnału nadawanego zmieniając w ten sposób kształt fali.
Na powyższym przykładzie sygnał zakłócający (niebieski) spowodował taką zmianę sygnału nadawanego, iż nastąpiło przekłamanie jednego bitu, zaznaczonego pod wykresem na czerwono.
W modulacji częstotliwości kształtujemy częstotliwość sygnału (długość okresu). W oknie bitu 0 częstotliwość jest niska, w oknie bitu 1 częstotliwość jest wysoka.
Częstotliwości dla bitu 0 i dla bitu 1 muszą być tak dobrane, aby bez problemu można było odróżnić od siebie te dwa sygnały. Na powyższym rysunku częstotliwość dla 1 jest dwa razy wyższa od częstotliwości dla 0. W praktyce stosunki tych częstotliwości są inne (ze względu na tzw. harmoniczne, czyli fale pochodne o częstotliwościach będących wielokrotnościami częstotliwości fali podstawowej), ale zasada pozostaje taka sama.
Powyżej widzimy kształt sygnału zmodulowanego częstotliwościowo dla danych binarnych 11010100. Ponieważ amplituda sygnału nie niesie informacji, zakłócenia amplitudowe do pewnego stopnia nie wpływają na przekazywaną informację. Dlatego modulacja FM jest dużo bardziej odporna na zakłócenia niż modulacja AM.
W modulacji fazy kształtujemy przesunięcie fazowe. Umówmy się, iż dla bitu 0 przesunięcie wynosi 0 radianów, a dla bitu 1 przesunięcie wynosi π radianów (o takim sygnale mówimy, iż posiada fazę przeciwną).
Poniżej przedstawiamy przebieg sygnału zmodulowanego fazowo dla danych binarnych 11010100. Zwróć uwagę, iż zmiana fazy występuje wtedy, gdy kolejne bity zmieniają swój stan np. z 1 na 0 lub z 0 na 1. Zamiast wykrywania przesunięć fazowych można jedynie wykrywać zmianę fazy (co jest dużo prostsze) i odpowiednio zmieniać stan odbieranych bitów.
Transmisja PM jest bardzo odporna na zakłócenia.
Aby zwiększyć przepustowość kanału transmisyjnego często łączy się ze sobą kilka modulacji (np. AM i FM). W ten sposób można zwielokrotnić postać sygnału, a co za tym idzie w oknie bitowym przesyłać nie pojedynczy bit lecz kilka bitów. Dla przykładu zademonstrujemy taką modulację AM/FM. Naraz będą przesyłane dwa bity wg schematu:
Sygnał modulujemy amplitudowo i częstotliwościowo wg dwóch bitów danych. Poniżej przedstawiamy przykładowy kształt sygnału dla danych binarnych 11010100. Zwróć uwagę, iż informację tą przesyłamy w dwa razy krótszym czasie niż w przypadku modulacji prostej. Zwielokrotniliśmy przepustowość kanału transmisyjnego.
Pokazane sposoby modulacji nie wyczerpują wszystkich stosowanych w praktyce metod kształtowania sygnału. Naszym celem było jedynie naszkicowanie problemów transmisji cyfrowej i sposobów ich rozwiązania.
Szybkość transmisji cyfrowej wyraża się w jednostkach zwanych bodami (ang.baud rate):
1 bod = 1 bit w ciągu jednej
sekundy Większe jednostki to 1 kilobod = 1000 bitów / sekundę 1 megabod = 1000 kilobodów = 1.000.000 bodów |
![]() |
Zespół Przedmiotowy Chemii-Fizyki-Informatyki w I Liceum Ogólnokształcącym im. Kazimierza Brodzińskiego w Tarnowie ul. Piłsudskiego 4 ©2023 mgr Jerzy Wałaszek |
Materiały tylko do użytku dydaktycznego. Ich kopiowanie i powielanie jest dozwolone
pod warunkiem podania źródła oraz niepobierania za to pieniędzy.
Pytania proszę przesyłać na adres email: i-lo@eduinf.waw.pl
Serwis wykorzystuje pliki cookies. Jeśli nie chcesz ich otrzymywać, zablokuj je w swojej przeglądarce.
Informacje dodatkowe.