Serwis Edukacyjny w I-LO w Tarnowie ![]() Materiały dla uczniów liceum |
Autor artykułu: mgr Jerzy Wałaszek |
©2023 mgr Jerzy Wałaszek
|
SPIS TREŚCI |
Podrozdziały |
Całka przybliżana jest sumą pól prostokątów:
![]() |
Metoda ta obarczona jest dosyć dużym błędem, ponieważ prostokąty niezbyt dobrze przybliżają pole pod wykresem funkcji. Błąd maleje wraz ze wzrostem n. Zaletą jest prosty wzór wyliczania całki.
Całka przybliżana jest sumą pól trapezów:
![]() |
Trapezy dużo lepiej przybliżają pole pod wykresem funkcji. Dlatego metoda ta jest dokładniejsza od metody prostokątów. W praktyce oznacza to mniejszą wartość n, czyli mniej obliczeń w celu uzyskania porównywalnej dokładności wyniku.
Całka przybliżana jest sumą pól ograniczonych parabolami:
![]() |
Parabole przybliżają wykres funkcji z małym błędem. Stąd metoda paraboliczna jest najdokładniejszą metodą wyznaczania wartości całek oznaczonych z tutaj opisanych. W praktyce n może być małe (np. w granicach 100...1000). Dokładność okupiona jest nieco skomplikowanym wzorem obliczeniowym.
Całka przybliżana jest średnią wartością funkcji w przedziale pomnożoną przez szerokość przedziału. Średnia wyznaczana jest w sposób pseudolosowy jako suma n wartości funkcji w przypadkowo wybranych punktach przedziału całkowania.
![]() |
Jest to najmniej dokładna z opisanych metod. Jej jakość porównywalna jest z metodą prostokątów. Zaletą natomiast będzie prosty wzór obliczeniowy.
Z podsumowania tego wynika, iż preferowanymi metodami całkowania numerycznego powinny być metoda trapezów oraz metoda paraboliczna. Pierwsza ma stosunkowo prosty wzór wyliczeniowy. W metodzie parabolicznej wzór jest bardziej skomplikowany, lecz ze względu na jej dokładność wykonamy mniej obliczeń, zatem szybciej uzyskamy wynik z mniejszymi błędami zaokrągleń.
Artykuł nie wyczerpuje metod numerycznego całkowania. Celem było jedynie podanie najprostszych przykładów realizacji. Zainteresowanych odsyłamy do bogatej literatury oraz zasobów sieci Internet.
![]() |
Zespół Przedmiotowy Chemii-Fizyki-Informatyki w I Liceum Ogólnokształcącym im. Kazimierza Brodzińskiego w Tarnowie ul. Piłsudskiego 4 ©2023 mgr Jerzy Wałaszek |
Materiały tylko do użytku dydaktycznego. Ich kopiowanie i powielanie jest dozwolone
pod warunkiem podania źródła oraz niepobierania za to pieniędzy.
Pytania proszę przesyłać na adres email: i-lo@eduinf.waw.pl
Serwis wykorzystuje pliki cookies. Jeśli nie chcesz ich otrzymywać, zablokuj je w swojej przeglądarce.
Informacje dodatkowe.