Serwis Edukacyjny
w I-LO w Tarnowie
obrazek

Materiały dla uczniów liceum

  Wyjście       Spis treści       Poprzedni  

obrazek

Autor artykułu: mgr Jerzy Wałaszek

©2019 mgr Jerzy Wałaszek
I LO w Tarnowie

obrazek

Materiały dla klasy I po gimnazjum

Sieci komputerowe

SPIS TREŚCI

SIECI KOMPUTEROWE

Sieć komputerowa jest grupą komputerów, które połączono ze sobą kanałami transmisji danych w celu wymiany informacji.
obrazek

Kanał transmisyjny jest drogą, trasą, po której przesyłane są informacje w postaci bitów. Kanały transmisyjne mogą być przewodowe, światłowodowe lub radiowe.

Pierwsze sieci komputerowe powstały niedługo po powstaniu pierwszych komputerów elektronicznych. Spowodowane to było chęcią udostępnienia drogiego komputera centralnego (ang. mainframe computer) wielu użytkownikom:

obrazek

Komputer centralny w latach 60-tych XX wieku

Do komputera centralnego podłączone były tzw. terminale sieciowe, na których pracowali użytkownicy sieci. Terminale były dużo prostsze w budowie od komputera centralnego, który zajmował się obliczeniami i głównym przetwarzaniem danych. Terminale służyły zwykle do przygotowywania informacji dla komputera centralnego oraz do otrzymywania wyników obliczeń z tego komputera. Używanie terminali pozwalało bardziej efektywnie wykorzystywać moc obliczeniową komputera centralnego. Tego typu rozwiązania stosowane są do dzisiaj.

obrazek

Głównym celem sieci komputerowej (ang. computer network) jest wymiana informacji pomiędzy komputerami tworzącymi tę sieć. Współczesne sieci komputerowe są bardzo skomplikowane i poznamy tylko ich podstawowe funkcje. Pełną wiedzę zdobywa się na specjalistycznych studiach informatycznych.

Zdefiniujmy najpierw podstawowe słownictwo:

obrazek

Sieć komputerowa (ang. computer network)

Zbiór komputerów rozmieszczonych na pewnym obszarze i połączonych ze sobą kanałami transmisyjnymi w celu wymiany informacji.

obrazek

Serwer sieciowy (ang. network server)

Wydzielony w sieci komputer, zwykle o dużej mocy obliczeniowej i pojemnych dyskach twardych, który steruje pracą sieci i udostępnia różne usługi - pocztę elektroniczną, składowanie plików i programów, dostęp do Internetu, komunikację i wymianę danych w obrębie sieci, itp.

obrazek

Administrator sieci, admin (ang. network administrator)

Osoba legitymująca się studiami informatycznymi o kierunku związanym z zarządzaniem i administrowaniem sieci komputerowych, posiadająca wieloletnie doświadczenie w pracy z sieciami. ich konfiguracją oraz utrzymaniem. Odpowiada za całość funkcjonowania sieci, ustawia różne serwisy dla użytkowników, zarządza kontami użytkowników oraz ich prawami dostępu do zasobów sieciowych, reaguje na ataki z Internetu, aktualizuje oprogramowanie sieciowe.

Administrator sieci jest wydzielonym zawodem informatycznym. Zawodów informatycznych jest dzisiaj ponad 20. Są to określone specjalizacje, które wymagają dedykowanych studiów, podobnie jak specjalizacje lekarskie: kardiolog, okulista, dentysta, chirurg...

obrazek

Stacja robocza, terminal sieciowy (ang. workstation)

Komputer podłączony do sieci, korzystający z jej zasobów.

 

obrazek

Użytkownik sieci (ang. network user)

Osoba pracująca na terminalu sieciowym. Użytkownicy posiadają w sieci różne prawa (np. dostępu do wybranych usług lub zasobów). Użytkownik o największych prawach jest awatarem (ang. avatar).

Podział sieci komputerowych ze względu na wielkość

LAN (ang. Local Area Network) - sieć lokalna:

Jest to mała sieć komputerowa zawierająca do kilkuset komputerów zgrupowanych fizycznie na niedużym obszarze, takim jak szkoła, biuro firmy, lotnisko, szpital, fabryka, instytut naukowy, itp. Kanały transmisyjne realizowane są zwykle za pomocą kabli elektrycznych lub radia (przykładem jest standard Ethernet).

MAN (ang. Metropolitan Area Network) - sieć miejska:

Jest to duża sieć komputerowa zawierająca dziesiątki tysięcy komputerów, która rozprzestrzenia się na większym obszarze, obejmującym od kilku budynków do granic strefy miejskiej. Cechuje się szybką transmisją danych. Zwykle sieć posiada kilkunastu różnych właścicieli, którzy zarządzają jej fragmentami. Kanały transmisyjne realizowane są zwykle za pomocą światłowodów o dużej przepustowości lub techniką radiową.

WAN (ang. Wide Area Network) - sieć rozległa:

Jest to sieć komputerowa pokrywająca rozległy obszar wykraczający poza granice miast, regionów, a nawet państw. Przykładem największej sieci WAN jest Internet oplatający całą Ziemię, a wkrótce również obecny w kosmosie. Ilość komputerów wchodzących w skład tej sieci zwykle nie jest ograniczona i liczy się ją milionami sztuk. Typowymi kanałami komunikacyjnymi w sieciach WAN są linie telefoniczne, połączenia krótkofalowe oraz kanały satelitarne. Sieci WAN często łączą ze sobą sieci LAN i MAN w większe grupy.

Podział sieci LAN ze względu na topologię

Topologia sieci komputerowej określa sposób połączenia jej węzłów i wynikające stąd własności. Zasadniczo rozróżniamy następujące topologie sieci LAN (S - serwer, W - stacja robocza):

obrazek

Gwiazda (ang. star)

Stacje robocze połączone są z serwerem sieci (lub innym urządzeniem sieciowym - np. przełącznikiem) za pomocą osobnych kanałów transmisyjnych. Sieci tego typu są obecnie bardzo popularne ze względu na swoją niezawodność.

Zalety:

Duża szybkość i niezawodność działania.
Uszkodzenie terminala nie powoduje awarii całej sieci.

Wady:

Skomplikowane okablowanie.
Dosyć wysoki koszt wykonania sieci.
Awaria serwera lub huba unieruchamia całą sieć.

obrazek

Pierścień (ang. ring)

Sieć posiada pojedynczy kanał transmisyjny w kształcie pierścienia, w którym krążą dane wymieniane w sieci przez sąsiednie stacje robocze. Serwer nie posiada tutaj pełnej kontroli nad siecią. W sieci typu pierścień występuje problem synchronizacji przesyłu danych. Rozwiązano go wprowadzając mały pakiet TOKEN, który cyklicznie krąży w pierścieniu. Komputer chcący transmitować dane przechwytuje pakiet TOKEN, przesyła dane i zwraca pakiet TOKEN do pierścienia, aby inne komputery też mogły uzyskać dostęp do kanału transmisyjnego.

Zalety:

Niższy koszt niż dla sieci typu gwiazda.
Prostsze okablowanie.
Łatwość dołączania nowych stanowisk.

Wady:

Przerwanie pierścienia lub uszkodzenie terminala blokuje ruch w całej sieci.
Przy dużej liczbie stacji roboczych spada szybkość transmisji.
Zmniejszone bezpieczeństwo przesyłania danych.

obrazek

Magistrala (ang. bus)

Sieć posiada pojedynczy kanał transmisyjny, do którego podłączone są wszystkie stacje robocze oraz serwer. Dane pojawiają się jednocześnie na całej magistrali. Występuje problem synchronizacji przesyłu danych, który rozwiązano metodą wyścigu: komputer chcący transmitować dane czeka, aż magistrala będzie wolna. Wtedy próbuje rozpocząć transmisję. Jeśli w tym samym czasie zrobi to samo inny komputer, to dojdzie do kolizji. Komputery wykryją kolizję i oba zwolnią magistralę. Następnie każdy z nich odczeka losowy okres czasu (bardzo ważne, w przeciwnym razie znów doszłoby do kolizji, gdyby czasy czekania były u obu komputerów równe) i ponownie próbuje przechwycić magistralę. Ten, który zrobi to pierwszy, wygrywa wyścig i może transmitować dane.

Zalety:

Niski koszt sieci oraz urządzeń sieciowych.
Proste okablowanie - zamiast kabli można wykorzystywać kanał radiowy.
Łatwość dołączania nowych stanowisk.

Wady:

Serwer nie posiada pełnej kontroli nad siecią.
Duża liczba terminali powoduje spadek efektywnej szybkości pracy sieci (częste kolizje).
Zerowe bezpieczeństwo przesyłu danych - każdy może podsłuchiwać każdego.

Sieć lokalna Ethernet

obrazek
Bob Metcalfe

Na początku lat siedemdziesiątych ubiegłego wieku w Centrum Badawczym Korporacji Xerox w Palo Alto (znanego w świecie pod nazwą PARC - ang. Palo Alto Research Center) naukowiec o nazwisku Bob Metcalfe zaprojektował i przetestował pierwszą na świecie sieć komputerową Ethernet (sieć komputerowa to grupa komputerów połączonych ze sobą kanałami transmisyjnymi do wymiany danych cyfrowych). W trakcie prac nad znalezieniem sposobu przyłączenia komputera "Alto" firmy Xerox do drukarki Metcalfe wynalazł rozwiązanie problemu fizycznego połączenia urządzeń za pomocą kabli elektrycznych. Rozwiązanie to nazwał Ethernet. Sieci Ethernet stały się od tego czasu najpopularniejsze na całym świecie i najpowszechniej używane. Standard Ethernet rozwijał się i obejmował coraz więcej nowych rozwiązań i technologii wraz z dojrzewaniem idei sieci komputerowych, lecz podstawy działania pozostały w zasadzie takie same jak w pierwszej sieci opracowanej przez Metcalfe'a. Pierwotny Ethernet realizował wymianę danych poprzez pojedynczy kabel, który współdzieliły wszystkie urządzenia w danej sieci. Po podłączeniu jakiegoś urządzenia do takiego kabla mogło ono prowadzić wymianę danych z dowolnym innym urządzeniem, które było również podłączone do tego kabla. Zasada ta pozwala rozbudowywać sieć w celu dołączania nowych urządzeń bez konieczności modyfikacji tych urządzeń, które już są dołączone do sieci.

Ethernet jest technologią niedużych, lokalnych sieci komputerowych, które zwykle działają w obrębie pojedynczego budynku, łącząc urządzenia znajdujące się blisko siebie. Długość kabla Ethernet zwykle nie przekracza kilkaset metrów. Nowoczesne rozwiązania pozwoliły zwiększyć te odległości do dziesiątek kilometrów. W transmisji danych stosowane są protokoły komunikacyjne. Protokół sieciowy jest zbiorem zasad, wg których prowadzona jest wymiana danych w sieci. Odpowiada on językowi ludzi. Aby czytać ten artykuł, musisz rozumieć język polski. Podobnie, aby dwa urządzenia w sieci komputerowej mogły wymieniać ze sobą dane, muszą oba rozumieć ten sam protokół komunikacyjny.

Informacje techniczne

Ethernet działa wg prostych reguł. W celu lepszego zrozumienia tych reguł należy poznać podstawową terminologią związaną z tą technologią.

Medium transmisyjne

Urządzenia pracujące we wspólnej sieci Ethernet są podłączone do wspólnego medium transmisyjnego, które umożliwia przesyłanie sygnałów elektrycznych. Historycznie medium transmisyjne było realizowane za pomocą kabla koncentrycznego (ang. coaxial cable), lecz obecnie zwykle stosuje się skręconą parę przewodów (ang. twisted pair cable) lub włókna światłowodowe (ang. optical fiber cable).

 

obrazek obrazek obrazek
Kabel koncentryczny Skrętka Włókno światłowodowe

Segment

Pojedyncze, wspólne medium transmisyjne nazywamy segmentem Ethernet.

Węzeł sieci

Urządzenie podłączone do segmentu nazywamy węzłem (ang. node), terminalem lub stacją roboczą (ang. workstation).

Ramka sieciowa

Jest porcją danych, które jeden komputer wysyła w sieci do drugiego komputera. Ramka zaopatrzona jest w dane, które identyfikują zarówno nadawcą jak i odbiorcę informacji.

Medium Ethernet

W zależności od stosowanego w sieci Ethernet medium istnieją różne sposoby podłączania kabla sieciowego do komputera. W każdym przypadku komputer musi być wyposażony w specjalną kartę sieciową, która posiada odpowiednie gniazda (współcześnie produkowane komputery przenośne posiadają gniazda Ethernet w swoim standardowym wyposażeniu).

obrazek obrazek obrazek
Wtyczka na kabel koncentryczny Wtyczka na skrętkę Wtyczka na włókno światłowodowe
obrazek obrazek obrazek
Karta Ethernet z gniazdkiem
na kabel koncentryczny
Karta Ethernet z gniazdkiem
na skrętkę
Karta Ethernet z gniazdkiem
na włókno światłowodowe

Technologia kabla koncentrycznego dzisiaj jest już przestarzała. Powszechnie są stosowane kable ze skrętek oraz kable światłowodowe. Te ostatnie pozwalają na dużo wyższe prędkości transmisji, ponieważ kabel światłowodowy jest odporny na różne zakłócenia, z którymi muszą walczyć kable elektryczne - wyładowania atmosferyczne, zakłócenia przemysłowe, pola magnetyczne, sprzężenia pasożytnicze, itp.

Ponieważ sygnał w medium Ethernet dociera do każdego podłączonego węzła, adres docelowy jest niezbędny do określenia zamierzonego odbiorcy ramki sieciowej.

obrazek

Przykładowo na powyższym rysunku gdy komputer 2 wysyła dane do drukarki 3, to ramkę sieciową odbierają również komputery 1 i 4. Jednakże, gdy węzeł odbiera ramkę, to sprawdza adres odbiorcy, aby dowiedzieć się, czy jest ona dla niego przeznaczona. Jeśli nie, odrzuca ramkę, nie czytając nawet jej zawartości. W sieci Ethernet istnieje tzw. adres rozsiewczy (ang. broadcast address), który dotyczy wszystkich węzłów w sieci. Jeśli adres docelowy w ramce jest adresem rozsiewczym, to ramka zostanie odczytana i przetworzona przez wszystkie węzły. System ten pozwala rozsyłać w sieci różne wiadomości sterujące.

Ethernet steruje przesyłem danych pomiędzy węzłami sieci za pomocą technologii CSMA/CD (ang. Carrier-Sense Multiple Access with Collision Detection - wielodostęp z wykrywaniem sygnału nośnego oraz wykrywaniem kolizji). Gdy jeden z węzłów w sieci Ethernet przesyła dane, wszystkie pozostałe węzły "słyszą" tę transmisję. W trakcie transmisji protokół zabrania innym węzłom rozpoczynania własnej transmisji - nie miałoby to sensu, ponieważ doszłoby do zakłócenia obu sygnałów, i żaden z węzłów nie byłby w stanie przesłać swoich danych - to zupełnie tak samo, jak dwóch lub więcej ludzi próbuje jednocześnie coś mówić, zakłócając się nawzajem. Gdy pewien węzeł chce transmitować dane, czeka aż medium będzie wolne od innych transmisji - czyli do momentu, gdy przestanie wykrywać sygnał nośny. Dopiero wtedy próbuje wysłać swoją ramkę danych.

Może się jednakże zdarzyć, iż w tym samym momencie inny węzeł wykrył koniec transmisji i sam również rozpoczął swoją własną transmisję. Węzły Ethernet nasłuchują medium w trakcie wysyłania swoich danych, aby upewnić się, że są jedynymi transmitującymi w tym czasie dane. Jeśli "usłyszą" swoje sygnały wracające w postaci zniekształconej, co zdarza się, gdy inny węzeł rozpocznie w tym samym czasie transmisję, to "wiedzą", że doszło do kolizji. Pojedynczy segment Ethernet czasami jest nazywany domeną kolizyjną, ponieważ żadne dwa węzły nie mogą w nim przesyłać danych w tym samym czasie bez wywołania kolizji. Gdy węzły wykryją kolizję, przerywają transmisję, odczekują przypadkowy okres czasu i ponawiają próbę wysłania ramki, gdy wykryją ciszę w medium.

Przypadkowa długość przerwy jest bardzo ważną częścią protokołu. Gdy dwa węzły wchodzą ze sobą w kolizję po raz pierwszy, to oba będą musiały ponownie przesyłać dane. Przy następnej nadarzającej się okazji oba węzły uczestniczące w poprzedniej kolizji będą posiadały dane przygotowane do wysłania. Gdyby wysyłały te dane przy pierwszej ciszy w medium, to najprawdopodobniej doszłoby między nimi do kolejnej kolizji, a później do następnej, następnej... Dzięki przypadkowemu okresowi opóźnienia sytuacja taka jest mało prawdopodobna i jeden z węzłów jako pierwszy zacznie transmisję. Wtedy drugi, zgodnie z protokołem, będzie musiał czekać na ponowną ciszę w sieci. Przypadkowość przerw gwarantuje, iż każdy z węzłów posiada równe szanse w dostępie do medium i będzie mógł wysłać swoje dane.

Urządzenia sieci LAN

Sieci LAN buduje się z biernych i aktywnych urządzeń sieciowych. Bierne urządzenia sieciowe to komponenty systemów okablowania strukturalnego.

Do aktywnych urządzeń sieci LAN należą:

obrazekregenerator (repeater) – jest urządzeniem pracującym w warstwie fizycznej modelu OSI, stosowanym do łączenia segmentów kabla sieciowego. Regenerator odbierając sygnały z jednego segmentu sieci wzmacnia je, poprawia ich parametry czasowe i przesyła do innego segmentu. Może łączyć segmenty sieci o różnych mediach transmisyjnych.

obrazek

obrazekkoncentrator (hub) – jest czasami określany jako wieloportowy regenerator. Służy do tworzenia fizycznej gwiazdy przy istnieniu logicznej struktury szyny lub pierścienia. Pracuje w warstwie 1 (fizycznej) modelu OSI. Pakiety wchodzące przez jeden port są transmitowane na wszystkie inne porty. Wynikiem tego jest fakt, że koncentratory pracują w trybie half-duplex (transmisja tylko w jedną stronę w tym samym czasie).

Obecnie rezygnuje się ze stosowania hubów, zastępując je przełącznikami, które są wydajniejsze i pozwalają zwiększyć szybkość transmisji w sieci.

obrazek

obrazekprzełącznik (switch) – są urządzeniami warstwy łącza danych (warstwy 2) i łączą wiele fizycznych segmentów LAN w jedną większą sieć. Przełączniki działają podobnie do koncentratorów z tą różnicą, że transmisja pakietów nie odbywa się z jednego wejścia na wszystkie wyjścia przełącznika, ale na podstawie adresów MAC kart sieciowych przełącznik uczy się, a następnie kieruje pakiety tylko do konkretnego odbiorcy co powoduje wydatne zmniejszenie ruchu w sieci. W przeciwieństwie do koncentratorów, przełączniki działają w trybie full-duplex (jednoczesna transmisja w obu kierunkach).

obrazek

obrazekmost (bridge) – służy do przesyłania i ew. filtrowania ramek między dwoma sieciami przy czym sieci te niekoniecznie muszą być zbudowane w oparciu o takie samo medium transmisyjne. Śledzi on adresy MAC umieszczane w przesyłanych do nich pakietach. Mosty nie mają dostępu do adresów warstwy sieciowej, dlatego nie można ich użyć do dzielenia sieci opartej na protokole TCP/IP na dwie podsieci IP. To zadanie mogą wykonywać wyłącznie routery. Analizując adresy sprzętowe MAC, urządzenie wie, czy dany pakiet należy wyekspediować na drugą stronę mostu, czy pozostawić bez odpowiedzi. Mosty podobnie jak przełączniki przyczyniają się w znacznym stopniu do zmniejszenia ruchu w sieci.

obrazek

obrazekrouter – urządzenie wyposażone najczęściej w kilka interfejsów sieciowych LAN, pracujący wydajnie procesor i oprogramowanie zawiadujące ruchem pakietów przepływających przez router. W sieciach lokalnych stosowane są, gdy sieć chcemy podzielić na dwie lub więcej podsieci. Segmentacja sieci powoduje, że poszczególne podsieci są od siebie odseparowane i pakiety nie przenikają z jednej podsieci do drugiej. W ten sposób zwiększamy przepustowość każdej podsieci.

 

Na początek:  podrozdziału   strony 

INTERNET

Krótka historia Internetu

W latach 60-tych ubiegłego wieku panowała zimna wojna pomiędzy dwoma mocarstwami - Związkiem Sowieckim i Stanami Zjednoczonymi. Kryzys kubański pokazał, iż granica wybuchu wojny termojądrowej jest niebezpiecznie cienka. Z tego powodu Departament Obrony USA stworzył Agencję Zaawansowanych Projektów Badawczych ARPA (ang. Advanced Research Project Agency), która zajęła się opracowaniem planów i budową rozległej sieci komputerowej odpornej na atak nuklearny. Pod koniec lat 60 powstaje ARPANET - sieć komputerowa łącząca cztery węzły w różnych regionach południowo zachodnich stanów USA. Podstawową cechą sieci ARPANET jest niezależność węzłów oraz brak centralnego ośrodka. Dzięki temu zniszczenie fragmentu sieci nie powoduje jej zablokowania jako całości.

obrazek

 

Sieć  ARPA

Rok 1969

Węzeł 1 UCLA sierpień

Węzeł 2 Stanford Research Institute (SRI) październik

Węzeł 3 University of California Santa Barbara (UCSB) listopad

Węzeł 4 University of Utah grudzień

 

obok - oryginalny szkic sieci

Sieć ARPANET była systematycznie rozbudowywana - dołączano do niej coraz więcej węzłów z innych ośrodków naukowych, instytucji rządowych, banków, firm prywatnych i państwowych.

obrazek Grudzień, 1969
obrazek Czerwiec, 1970
obrazek Grudzień, 1970
obrazek Wrzesień, 1971
obrazek Marzec, 1972
obrazek Sierpień, 1972
obrazek Wrzesień, 1973
obrazek Czerwiec, 1974
obrazek Lipiec, 1975
obrazek Lipiec, 1976
obrazek Lipiec, 1977

Pod koniec lat 80-tych ARPANET objęła swoim zasięgiem całą Ziemię - powstał znany nam Internet.

Struktura Internetu

obrazek

Internet jest obecnie tworem bardzo skomplikowanym. Powyższy obrazek w dużym uproszczeniu przedstawia jego strukturę. Całość przypomina system nerwowy mózgu człowieka - nie zdziwiłbym się, gdyby w niedalekiej przyszłości okazało się, iż Internet wytworzył samoświadomość. Ale wróćmy do rzeczy.

W przeciwieństwie do sieci lokalnej Internet nie łączy ze sobą pojedynczych komputerów, lecz całe sieci komputerowe. Stąd pochodzi jego nazwa:

INTER  NET
między - sieć

Sieci są połączone za pomocą tzw. sieci szkieletowej (ang. backbone network), która zbudowana jest ze szybkich kanałów transmisyjnych oraz komputerów kierujących przepływem danych - routerów. Routery wybierają w sieci szkieletowej najlepsze trasy dla przesyłanych danych oraz dbają o obejścia zablokowanych lub przeciążonych fragmentów sieci. Dzięki nim informacja trafia niezawodnie do odbiorcy.

Komputery w sieci Internet posiadają przydzielone unikalne numery, które służą do ich identyfikacji. Numery te nazywamy adresami IP. Służą one routerom do określania ścieżki przesyłu danych pomiędzy dwoma komputerami w sieci Internet - analogicznie jak w przypadku połączenia telefonicznego. W wersji 4 protokołu internetowego adresy IP składają się z 4 bajtów (nowa wersja protokołu nr 6 definiuje już 16 bajtowe adresy IP). Adres IP zapisujemy jako czwórkę liczb z zakresu od 0 do 255, rozdzielone kropkami:

nnn.nnn.nnn.nnn
gdzie nnn = 0...255

Przykład:

192.193.225.12,  87.66.139.253,  221.188.164.1

Wszystkich możliwych adresów IP jest 256 × 256 × 256 × 256 = 2564 = 4294967296, czyli ponad 4 mld. Ponieważ Internet łączy ze sobą nie pojedyncze komputery, ale całe sieci komputerowe, adresy IP dzielą się na kilka klas (dzisiaj podział ten nie jest już tak sztywny jak dawniej). Adres IP zawiera numer sieci komputerowej oraz numer komputera wewnątrz tej sieci.

Klasa A

W klasie A pierwszy bajt określa numer sieci, a pozostałe 3 bajty są numerem hosta wewnątrz tej sieci:

1...126.hhh.hhh.hhh

Pierwszy bajt może przyjmować wartości tylko od 1 do 126 (0 i 127 są używane do specjalnych celów w sieci). Wynika z tego, iż w klasie A może być tylko 126 dużych sieci komputerowych, a w każdej z nich może znaleźć się 256 × 256 × 256 = 2563 = 16777216 hostów, czyli ponad 16 mln. Ponieważ duże sieci nieefektywnie gospodarują swoimi adresami IP, od 1997 roku mniejsze sieci wypożyczają część numerów klasy A dla swoich hostów. Wymagało to oczywiście odpowiedniej przebudowy oprogramowania routerów, tak aby dane były kierowano do właściwych węzłów, które znajdują się poza siecią posiadającą pulę adresów IP klasy A.

Klasa B

W klasie B dwa pierwsze bajty adresu IP zawierają numer sieci. Pozostałe dwa bajty zawierają numer hosta wewnątrz danej sieci:

128...191.sss.hhh.hhh

Pierwszy bajt przyjmuje wartości od 128 do 191 (64 możliwe wartości). Chodzi o to, aby numer IP klasy B nie wchodził w zakres numerów IP klasy A. Drugi bajt numeru sieci ma wartość dowolną. Zatem w klasie B może być 64 × 256 = 16384 sieci, a w każdej z nich może być do 256 × 256 = 2562 = 65536 hostów.

Klasa C

W klasie C numer sieci zawiera się w 3 pierwszych bajtach. Numer hosta podaje ostatni, czwarty bajt:

192...223.sss.sss.hhh

Pierwszy bajt przyjmuje wartości od 192 do 223 (32 wartości), pozostałe dwa bajty są dowolne, zatem sieci może być 32 × 256 × 256 = 2097152, czyli ponad 2 mln. W każdej z sieci klasy C może wystąpić do 254 hostów (numer 0 i 255 są zarezerwowane na wewnętrzne potrzeby komutacyjne w sieci).

Podsumujmy:

Klasa Adres IP Liczba sieci Liczba hostów
A 1-126.h.h.h 126 16777216
B 127-191.s.h.h 16384 65536
C 192-223.s.s.h 2097152 254

Dzisiaj podział na klasy nie jest już tak sztywny jak dawniej. Dzięki rozwojowi oprogramowania sieciowego numery klas A i B mogą być przekierowywane do mniejszych sieci, co umożliwia ich efektywniejsze wykorzystywanie.

Nazwy domenowe

Adresy IP są wykorzystywane przez routery do określenia trasy pakietów danych, przesyłanych w sieci Internet. Dzięki adresowi IP sieć szkieletowa odpowiednio zestawia połączenie pomiędzy hostami. Z drugiej strony adres IP jest mało czytelny dla ludzi - głównych użytkowników sieci. Dlatego wprowadzono alternatywny sposób adresowania - nazwy domenowe (ang. domain names). Nazwy te tworzą hierarchiczną strukturę, odczytywaną od końca. Np.:
eduinf.waw.pl
pl    domena główna, w tym przypadku oznacza nasz kraj.
waw   poddomena domeny pl. W domenie pl są również poddomeny krakow, onet, wp, interia, google itp.
eduinf   poddomena należąca do waw.pl.

Nazwy domenowe zastępują numery IP. Np. zamiast wpisywać do przeglądarki numer IP 213.180.141.140 (sprawdź to) prościej i czytelniej jest wpisać onet.pl. Pojawia się tylko jeden problem - routery potrzebują adresów IP, zatem w celu nawiązania połączenia w Internecie nazwa domenowa musi zostać przekształcona na odpowiadający jej numer IP. Możemy to porównać z telefonowaniem do kolegi, którego nazwisko znamy, lecz nie wiemy jaki posiada numer telefoniczny. Problem rozwiązujemy wyszukując numer w książce telefonicznej. Na szczęście w sieci Internet również istnieją "książki telefoniczne" dla nazw domenowych. Nazywamy je serwerami nazw domenowych - w skrócie DNS (ang. Domain Name Server).

Połączenie przy pomocy nazwy domenowej wygląda następująco:

Załóżmy, że nasz komputer chce się połączyć poprzez Internet z komputerem o nazwie domenowej www.uczniak.pl. Nie może tego zrobić bezpośrednio, ponieważ do połączenia potrzebny jest numer IP komputera docelowego, a tego numeru nasz komputer nie zna. 

obrazek

Nasz komputer łączy się zatem ze swoim serwerem nazw domenowych DNS i przesyła mu nazwę www.uczniak.pl. Adres IP serwera DNS jest jednym z parametrów konfiguracyjnych połączenia komputera z Internetem, co zobaczysz za chwilę.

obrazek

Serwer DNS przeszukuje swoją bazę danych w poszukiwaniu nazwy www.uczniak.pl (w praktyce jest to o wiele bardziej skomplikowane, lecz nie będziemy tutaj wchodzić w szczegóły techniczne działania DNS-ów).

obrazek

Gdy serwer znajdzie adres IP 193.193.12.7 odpowiadający nazwie domenowej www.uczniak.pl, to odsyła go z powrotem do naszego komputera.

obrazek

Mając numer IP komputera docelowego, nasz komputer może nawiązać z nim połączenie poprzez sieć Internet.

obrazek

Jak działa routowanie danych w Internecie

Pokażemy teraz w uproszczeniu sposób kierowania pakietów danych w sieci Internet. Załóżmy, że pewien komputer w Nowym Jorku chce przesłać dane do jednego z komputerów w naszej sieci szkolnej. Opatruje swój pakiet danych adresem IP komputera docelowego i przesyła go do routera sieci szkieletowej w Nowym Jorku.

obrazek

Na podstawie adresu IP zawartego w danych routery stwierdzają, że odbiorca pakietu jest gdzieś w Europie. Kierują zatem dane do serwera europejskiego, np. w Londynie (rzeczywista trasa może być inna, gdyż zależy od faktycznej infrastruktury sieciowej, tutaj chodzi nam jedynie o pokazanie zasady działania tego procesu).

obrazek

Router w Londynie znów patrzy na adres IP zawarty w pakiecie i na jego podstawie stwierdza, że odnosi się on do jakiejś sieci w Europie Środkowej. Wysyła pakiet do routera w Berlinie.

obrazek

Router w Berlinie analizuje adres IP zawarty w przesyłanym pakiecie i stwierdza, że jego sieć docelowa leży w Polsce. Przesyła pakiet do routera we Wrocławiu.

obrazek

Router we Wrocławiu stwierdza, że adres IP pakietu odnosi się do sieci w okolicach Krakowa. Przesyła pakiet do routera w Krakowie.

obrazek

Router w Krakowie stwierdza, że sieć o danym adresie IP znajduje się w Tarnowie. Pakiet jest przesyłany do routera w Tarnowie, a dalej do routera w I LO w Tarnowie.

obrazek

W końcu pakiet danych odbiera nasz router szkolny. Teraz na podstawie adresu komputera zawartego w drugiej części adresu IP pakiet danych jest kierowany do właściwego komputera w sieci LAN.

obrazek

Na początek:  podrozdziału   strony 

ĆWICZENIA

Wyszukiwanie informacji w Internecie

Sieć Internet posiada ogromne zasoby informacyjne, niespotykane dotąd w historii ludzkości. Znając jeden z głównych języków świata (angielski, hiszpański, niemiecki, francuski lub chiński) posiadasz dostęp do olbrzymiej bazy wiedzy. Dlatego tak ważna jest nauka języków obcych (szczególnie języka angielskiego). W języku polskim również znajdziesz wiele informacji w sieci, jednakże ich liczba jest nieporównywalnie mniejsza od informacji znajdowanych w języku angielskim. Wykonajmy prosty eksperyment:

Wejdź na stronę wyszukiwarki google.pl i wpisz hasło:

Miś Yogi

Otrzymasz około 99.900 wyników, czyli trafień hasła na stronach WWW. Nie jest to zły wynik. To samo hasło wpisz po angielsku:

Yogi bear

Teraz liczba haseł wyniesie 1.300.000, czyli ponad 13 razy więcej. Większa liczba trafień zwiększa twoje prawdopodobieństwo znalezienia tego, czego szukasz.

Musisz jednak wiedzieć, że informacje dostępne w sieci nie zawsze są wprowadzane przez kompetentne osoby. Często są to informacje błędne, mylące lub zupełnie nie odnoszące się do opisywanego przez nie zagadnienia. Dlatego nie wolno bezkrytycznie przyjmować za prawdę wszystkiego, co napotkasz w sieci. Musisz nauczyć się oceniać wiarygodność znalezionych informacji. Wymaga to od ciebie dużej wiedzy i rozsądku.

Informację znajdujemy dzięki różnym serwisom wyszukiwawczym, które są obecne w sieci Internet. Poniżej znajduje się lista najpopularniejszych wyszukiwarek, z których korzystają użytkownicy sieci:

Ćwiczenie

Instrukcja wykonania

  • Uruchom notatnik Windows.
  • Wpisz klasę oraz swoje imię i nazwisko.
  • Przekopiuj do notatnika Windows pytanie o numerze zgodnym z numerem swojego stanowiska.
  • Za pomocą podanych wyżej wyszukiwarek wyszukaj w Internecie odpowiedź na pytanie.
  • Streść odpowiedź i wpisz ją w notatniku pod pytaniem.
  • Plik notatnika zapisz w swoim katalogu roboczym na dysku twardym.
  • Za pomocą aplikacji Filezilla prześlij plik na komputer nauczyciela. Przypominam, serwer ma adres 192.168.28.2, konto nazywa się sXX, gdzie XX to dwucyfrowy numer stanowiska, zgodny z numerem twojego pytania, brak hasła.
  1. Do czego służą mikrokontrolery?
  2. Kto po raz pierwszy skroplił tlen i azot?
  3. Kto uczestniczył w pierwszym locie na Księżyc?
  4. Co oznacza termin SMD?
  5. Jak nazywa się najbliższa Ziemi galaktyka?
  6. Jak nazywała się największa bomba atomowa zdetonowana przez człowieka?
  7. Co to jest aparat szparkowy?
  8. Jak nazywa się najgłębsze jezioro w Tatrach i ile ma metrów głębokości?
  9. Od nazwiska jakiego naukowca pochodzi nazwa jednostki prędkości transmisji?
  10. W jakiej odległości od Ziemi znajduje się centrum naszej galaktyki?
  11. Kto wynalazł pierwszy mikroprocesor?
  12. Co oznacza po polsku nazwa Hindu Kush?
  13. Kto jest ojcem komputerów?
  14. Jaki kryptonim nosił plan ataku Niemiec nazistowskich na Polskę we wrześniu 1939 roku?
  15. Kto obecnie stoi na czele NATO?
  16. Co oznacza symbol Pt47?
  17. Jak po norwesku będzie "dzień dobry"?
  18. Co to jest serbet?
Na początek:  podrozdziału   strony 

PODSUMOWANIE

Na początek:  podrozdziału   strony 

Materiały uzupełniające

Na początek:  podrozdziału   strony 

Zespół Przedmiotowy
Chemii-Fizyki-Informatyki

w I Liceum Ogólnokształcącym
im. Kazimierza Brodzińskiego
w Tarnowie
ul. Piłsudskiego 4
©2019 mgr Jerzy Wałaszek

Materiały tylko do użytku dydaktycznego. Ich kopiowanie i powielanie jest dozwolone
pod warunkiem podania źródła oraz niepobierania za to pieniędzy.

Pytania proszę przesyłać na adres email: i-lo@eduinf.waw.pl

Serwis wykorzystuje pliki cookies. Jeśli nie chcesz ich otrzymywać, zablokuj je w swojej przeglądarce.
Informacje dodatkowe.