Informatyka dla klas II

Sortowanie przez scalanie

Poczynając od tego rozdziału przechodzimy do opisu algorytmów szybkich, tzn. takich, które posiadają klasę czasowej złożoności obliczeniowej równą O(n log n) lub nawet lepszą.

W informatyce zwykle obowiązuje zasada, iż prosty algorytm posiada dużą złożoność obliczeniową, natomiast algorytm zaawansowany posiada małą złożoność obliczeniową, ponieważ wykorzystuje on pewne własności, dzięki którym szybciej dochodzi do rozwiązania.

Wiele dobrych algorytmów sortujących korzysta z rekurencji, która powstaje wtedy, gdy do rozwiązania problemu algorytm wykorzystuje samego siebie ze zmienionym zestawem danych.

Przykład:

Jako przykład może posłużyć rekurencyjne obliczanie silni. Silnię liczby n należącej do zbioru liczb naturalnych definiujemy następująco:

n! = 1 × 2 × 3 × ... × (n - 1) × n

Na przykład: 5! = 1 × 2 × 3 × 4 × 5 = 120

Specyfikacja algorytmu

Dane wejściowe
n - liczba, której silnie liczymy na danym poziomie rekurencyjnym,  n obrazek N
Dane wyjściowe
Wartość silni n!

 

Lista kroków

K01: Jeśli n  < 2, silnia(n) ← 1 i zakończ
K02: silnia(n) ← n  × silnia(n  - 1) i zakończ

 

Przykładowy program w języku C++

// Rekurencyjne obliczanie silni
//------------------------------
// (C)2016 I LO w Tarnowie
// I LO w Tarnowie
//------------------------------

#include <iostream>

unsigned long long silnia(int n)
{
    if(n < 2) return 1;
    else return n * silnia(n - 1);
}

int main()
{
    unsigned n;

    cout << "Program oblicza rekurencyjnie silnie z liczby n\n"
            "-----------------------------------------------\n"
            "  (C)2016 mgr Jerzy Walaszek I LO w Tarnowie\n\n"
            "Podaj n = "; cin >> n;
    cout << endl << n << "! = " << silnia(n) << endl << endl;

    return 0;
}

 

Dzięki rekurencji funkcja wyliczająca wartość silni staje się niezwykle prosta. Najpierw sprawdzamy warunek zakończenia rekurencji, tzn. sytuację, gdy wynik dla otrzymanego zestawu danych jest oczywisty. W przypadku silni sytuacja taka wystąpi dla n < 2 - silnia ma wartość 1. Jeśli warunek zakończania rekurencji nie wystąpi, to wartość wyznaczamy za pomocą rekurencyjnego wywołania obliczania silni dla argumentu zmniejszonego o 1. Wynik tego wywołania mnożymy przez n i zwracamy jako wartość silni dla n.

 

obrazek

 

Wynaleziony w 1945 roku przez Johna von Neumanna algorytm sortowania przez scalanie jest algorytmem rekurencyjnym. Wykorzystuje zasadę dziel i zwyciężaj, która polega na podziale zadania głównego na zadania mniejsze dotąd, aż rozwiązanie stanie się oczywiste. Algorytm sortujący dzieli porządkowany zbiór na kolejne połowy dopóki taki podział jest możliwy (tzn. podzbiór zawiera co najmniej dwa elementy). Następnie uzyskane w ten sposób części zbioru rekurencyjnie sortuje tym samym algorytmem. Posortowane części łączy ze sobą za pomocą scalania, tak aby wynikowy zbiór był posortowany.
 

Scalanie zbiorów uporządkowanych

Podstawową operacją algorytmu jest scalanie dwóch zbiorów uporządkowanych w jeden zbiór również uporządkowany. Operację scalania realizujemy wykorzystując pomocniczy zbiór, w którym będziemy tymczasowo odkładać scalane elementy dwóch zbiorów. Ogólna zasada jest następująca:

 

  1. Przygotuj pusty zbiór tymczasowy

  2. Dopóki żaden ze scalanych zbiorów nie jest pusty, porównuj ze sobą pierwsze elementy każdego z nich i w zbiorze tymczasowym umieszczaj mniejszy z elementów usuwając go jednocześnie ze scalanego zbioru.

  3. W zbiorze tymczasowym umieść zawartość tego scalanego zbioru, który zawiera jeszcze elementy.

  4. Zawartość zbioru tymczasowego przepisz do zbioru wynikowego i zakończ algorytm.

 

Przykład:

Połączmy za pomocą opisanego algorytmu dwa uporządkowane zbiory: { 1 3 6 7 9 } z { 2 3 4 6 8 }

 

Scalane
zbiory
Zbiór
tymczasowy
Opis wykonywanych działań
[1] 3  6  7  9 
 2  3  4  6  8 
 
Porównujemy ze sobą najmniejsze elementy scalanych zbiorów. Ponieważ zbiory te są już uporządkowane, to najmniejszymi elementami będą zawsze ich pierwsze elementy.
    3  6  7  9 
 2  3  4  6  8 
[1]
W zbiorze tymczasowym umieszczamy mniejszy element, w tym przypadku będzie to liczba 1. Jednocześnie element ten zostaje usunięty z pierwszego zbioru
    3  6  7  9 
[2]  4  6  8 
 1 
Porównujemy kolejne dwa elementy i mniejszy umieszczamy w zbiorze tymczasowym.
   [3] 6  7  9 
    3  4  6  8 
 1[2]
Następne porównanie i w zbiorze tymczasowym umieszczamy liczbę 3. Ponieważ są to elementy równe, to nie ma znaczenia, z którego zbioru weźmiemy element 3.
       6  7  9 
   [3] 4  6  8 
 1 2[3]
Teraz do zbioru tymczasowego trafi drugie 3.
       6  7  
      [4] 6  8 
 1 2 3[3]
W zbiorze tymczasowym umieszczamy mniejszy z porównywanych elementów, czyli liczbę 4.
      [6] 7  9 
          6  8 
 1 2 3 3[4]
Porównywane elementy są równe, zatem w zbiorze tymczasowym umieszczamy dowolny z nich.
          7  
         [6] 8 
 1 2 3 3 4[6]
Teraz drugą liczbę 6.
         [7] 
             8 
 1 2 3 3 4 6[6]
W zbiorze tymczasowym umieszczamy liczbę 7
             9 
            [8]
 1 2 3 3 4 6 6[7]
Teraz 8
            [9]
 1 2 3 3 4 6 6 7[8]
Drugi zbiór jest pusty. Od tego momentu już nie porównujemy, lecz wprowadzamy do zbioru tymczasowego wszystkie pozostałe elementy pierwszego zbioru, w tym przypadku będzie to liczba 9.

 1 2 3 3 4 6 6 7 8[9]
Koniec scalania. Zbiór tymczasowy zawiera wszystkie elementy scalanych zbiorów i jest uporządkowany. Możemy w dalszej kolejności przepisać jego zawartość do zbioru docelowego.

 

Z podanego przykładu możemy wyciągnąć wniosek, iż operacja scalania dwóch uporządkowanych zbiorów jest dosyć prosta. Diabeł jak zwykle tkwi w szczegółach.

 

Algorytm scalania dwóch zbiorów

Przed przystąpieniem do wyjaśniania sposobu łączenia dwóch zbiorów uporządkowanych w jeden zbiór również uporządkowany musimy zastanowić się nad sposobem reprezentacji danych. Przyjmijmy, iż elementy zbioru będą przechowywane w jednej tablicy, którą oznaczymy literką d. Każdy element w tej tablicy będzie posiadał swój numer, czyli indeks z zakresu od 0 do n-1.

Kolejnym zagadnieniem jest sposób reprezentacji scalanych zbiorów. W przypadku algorytmu sortowania przez scalanie zawsze będą to dwie przyległe połówki zbioru, który został przez ten algorytm podzielony. Co więcej, wynik scalenia ma być umieszczony z powrotem w tym samym zbiorze.

 

Przykład:

Prześledźmy prosty przykład. Mamy posortować zbiór o postaci: { 6 5 4 1 3 7 9 2 }

 

Sortowany zbiór Opis wykonywanych operacji
d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]
6 5 4 1 3 7 9 2 Zbiór wyjściowy.
6 5  4 1 3 7 9 2 Pierwszy podział.
6 5 4 1 3 7 9 2 Drugi podział
6 5 4 1 3 7 9 2 Trzeci podział.
5 6 1 4 3 7 2 9 Pierwsze scalanie.
1
4 5 6 2 3 7 9 Drugie scalanie.
1 2 3 4 5 6 7 9 Trzecie scalanie. Koniec.

 

Ponieważ w opisywanym tutaj algorytmie sortującym scalane podzbiory są przyległymi do siebie częściami innego zbioru, zatem logiczne będzie użycie do ich definicji indeksów wybranych elementów tych podzbiorów:

 

ip - indeks pierwszego elementu w młodszym podzbiorze
is - indeks pierwszego elementu w starszym podzbiorze
ik - indeks ostatniego elementu w starszym podzbiorze

 

Przez podzbiór młodszy rozumiemy podzbiór zawierający elementy o indeksach mniejszych niż indeksy elementów w podzbiorze starszym.

 

pozostała część zbioru ip ... is ... ik pozostała część zbioru

młodszy podzbiór

starszy podzbiór

 

Indeks końcowego elementu młodszej połówki zbioru z łatwością wyliczamy - będzie on o 1 mniejszy od indeksu pierwszego elementu starszej połówki.

 

Przykład:

Po pierwszym podziale prezentowanego powyżej zbioru otrzymujemy następujące wartości indeksów:

Młodsza
 połówka
Starsza
 połówka
ip = 0 is = 4
ik = 7

Po kolejnym podziale połówek otrzymujemy 4 ćwiartki dwuelementowe. Wartości indeksów będą następujące:

Młodsza połówka Starsza połówka
Młodsza
ćwiartka
Starsza
ćwiartka
Młodsza
ćwiartka
Starsza
ćwiartka
ip = 0 is = 2 ip = 4 is = 6
ik = 3 ik = 7

 

Specyfikacja algorytmu scalania

Scalaj(ip, is, ik)

Dane wejściowe

d[ ] - scalany zbiór
ip - indeks pierwszego elementu w młodszym podzbiorze,  ip obrazek N
is - indeks pierwszego elementu w starszym podzbiorze,  is obrazek N
ik - indeks ostatniego elementu w starszym podzbiorze,  ik obrazek N

Dane wyjściowe

d[ ] - scalony zbiór

Zmienne pomocnicze

p[ ] - zbiór pomocniczy, który zawiera tyle samo elementów, co zbiór d[ ].
i1 - indeks elementów w młodszej połówce zbioru d[ ],  i1 obrazek N
i2 - indeks elementów w starszej połówce zbioru d[ ],  i2 obrazek N
i - indeks elementów w zbiorze pomocniczym p[ ],  i obrazek N

 

Lista kroków algorytmu scalania

K01: i1ip;   i2is;   iip
K02: Dla i  = ip, ip + 1, ..., ik: wykonuj
    jeśli (i1 = is) ∨ (i2ik  i d[i1] > d[i2]), to
        p[i] ← d[i2];   i2i2 + 1
    inaczej
        p[i] ← d[i1];   i1i1 + 1
K03: Dla i  = ip, ip + 1,...,ik: d[i] ← p[i]
K04: Zakończ

 

Schemat blokowy algorytmu scalania

obrazek

Operacja scalania dwóch podzbiorów wymaga dodatkowej pamięci o rozmiarze równym sumie rozmiarów scalanych podzbiorów. Dla prostoty na potrzeby naszego algorytmu zarezerwujemy tablicę p o rozmiarze równym rozmiarowi zbioru d[ ]. W tablicy p algorytm będzie tworzył zbiór tymczasowy, który po zakończeniu scalania zostanie przepisany do zbioru d[ ] w miejsce dwóch scalanych podzbiorów.

Parametrami wejściowymi do algorytmu są indeksy ip, is oraz ik, które jednoznacznie definiują położenie dwóch podzbiorów do scalenia w obrębie tablicy d[ ]. Elementy tych podzbiorów będą indeksowane za pomocą zmiennych i1 (młodszy podzbiór od pozycji ip do is - 1) oraz i2 (starszy podzbiór od pozycji is do ik). Na początku algorytmu przypisujemy tym zmiennym indeksy pierwszych elementów w każdym podzbiorze.

Zmienna i będzie zawierała indeksy elementów wstawianych do tablicy p[ ]. Dla ułatwienia indeksy te przebiegają wartości od ip do ik, co odpowiada obszarowi tablicy d[ ] zajętemu przez dwa scalane podzbiory. Na początku do zmiennej i wprowadzamy indeks pierwszego elementu w tym obszarze, czyli ip.

Wewnątrz pętli sprawdzamy, czy indeksy i1 i i2 wskazują elementy podzbiorów. Jeśli któryś z nich wyszedł poza dopuszczalny zakres, to dany podzbiór jest wyczerpany - w takim przypadku do tablicy p przepisujemy elementy drugiego podzbioru.

Jeśli żaden z podzbiorów nie jest wyczerpany, porównujemy kolejne elementy z tych podzbiorów wg indeksów i1 i i2. Do tablicy p[ ] zapisujemy zawsze mniejszy z porównywanych elementów. Zapewnia to uporządkowanie elementów w tworzonym zbiorze wynikowym. Po zapisie elementu w tablicy p[ ], odpowiedni indeks i1 lub i2 jest zwiększany o 1. Zwiększany jest również indeks i, aby kolejny zapisywany element w tablicy p[ ] trafił na następne wolne miejsce. Pętla jest kontynuowana aż do zapełnienia w tablicy p[ ] obszaru o indeksach od ip do ik.

Wtedy przechodzimy do końcowej pętli, która przepisuje ten obszar z tablicy p[ ] do tablicy wynikowej d[ ]. Scalane zbiory zostają zapisane zbiorem wynikowym, który jest posortowany rosnąco.

 

Algorytm sortowania przez scalanie

Sortuj_przez_scalanie(ip, ik)

Dane wejściowe

d[ ] - sortowany zbiór
ip - indeks pierwszego elementu w młodszym podzbiorze,  ip obrazek N
ik - indeks ostatniego elementu w starszym podzbiorze,  ik obrazek N

Dane wyjściowe

d[ ] - posortowany zbiór

Zmienne pomocnicze

is - indeks pierwszego elementu w starszym podzbiorze,  is obrazek N

 

Lista kroków algorytmu sortującego

K01: is ←  (ip + ik + 1) div 2
K02: Jeśli is - ip > 1, to Sortuj_przez_scalanie(ip, is - 1)
K03: Jeśli ik - is > 0, to Sortuj_przez_scalanie(is, ik)
K04: Scalaj(ip, is, ik)
K05: Zakończ

 

Schemat blokowy algorytmu sortującego

obrazek

Algorytm sortowania przez scalanie jest algorytmem rekurencyjnym. Wywołuje się go z zadanymi wartościami indeksów ip oraz ik. Przy pierwszym wywołaniu indeksy te powinny objąć cały zbiór d, zatem ip = 0, a ik = n-1.

Najpierw algorytm wyznacza indeks is, który wykorzystywany jest do podziału zbioru na dwie połówki:

- młodszą o indeksach elementów od ip do is - 1
- starszą o indeksach elementów od is do ik

Następnie sprawdzamy, czy dana połówka zbioru zawiera więcej niż jeden element. Jeśli tak, to rekurencyjnie sortujemy ją tym samym algorytmem.

Po posortowaniu obu połówek zbioru scalamy je za pomocą opisanej wcześniej procedury scalania podzbiorów uporządkowanych i kończymy algorytm. Zbiór jest posortowany.

W przykładowych programach procedurę scalania umieściliśmy bezpośrednio w kodzie algorytmu sortującego, aby zaoszczędzić na wywoływaniu.


 


   I Liceum Ogólnokształcące   
im. Kazimierza Brodzińskiego
w Tarnowie

©2024 mgr Jerzy Wałaszek

Dokument ten rozpowszechniany jest zgodnie z zasadami licencji
GNU Free Documentation License.

Pytania proszę przesyłać na adres email: i-lo@eduinf.waw.pl

W artykułach serwisu są używane cookies. Jeśli nie chcesz ich otrzymywać,
zablokuj je w swojej przeglądarce.
Informacje dodatkowe